THE STUDY OF A CRITICAL POINT IN AN EQUATION
OF TRANSFER THEORY

R. 8. Levitin UDC 536.24:517.9

An investigation was carried out to establish the conditions for the appearance and disap-
pearance of a compressed bundle of trajectories, leaving from a critical point of an equa-
tion in the self-similar case under the presence of nonsmooth perturbing forces.

1°. Some problems of transfer theory (heat-transfer diffusion) in the presence of self-similarity are
reduced to ordinary differential equations of the form
dz

a (x) = F(x, 2), (1

for which it is necessary to elucidate the existence and the behavior of O-curves near the origin (0, 0)
which is a singular point. First we give the following theorem, from which follows the formulation of the
problem. )

The Hartman-—Wintner Theorem [1]. Assume that in Eq. (1):

1) the function F(x, z) is defined and continuocus with respect to x, z in the domain

0<<xCxy —2 <22, 2

where x; and z; are positive numbers; 1/F(x, z) is bounded for 0 < x =&, 7 = |z| = zj, where
T > 0 is an arbitrarily small; € is a sufficiently small number;

2) Fix, —zg) > 0, F(x, 2g) < 0for 0 < x = x¢3

3) the function ¢ (x) is defined, continuous and positive for 0 < x = x,

%
j dx -} 00.
0

czx):

Then there exists at least one solution z = z(x) of Eq. (1), which is defined in the interval 0 < x = x,,
and every such solution has the property: z(x) — 0 for x — 0 (i.e., represents an O-curve of Eg. (1)).

Thus, under the conditions of the above given theorem for Eq. (1), there exists in the domain (2)
either one O-curve or an uncountable set of O-curves, i.e., there arises the problem of distinguishing the
O-curves.

Below we give uniqueness and nonuniqueness theorems for the O-curves.

In [2], Andreev establishes a uniqueness theorem for O-curves if the conditions of the Hartman
—~Wintner theorem are satisfied. To this end he gives the following lemma.

LEMMA. We assume that for Eq. (1):
1) the conditions of the Hartman—Wintner theorem hold;

2) in the domain (2) (or any subdomain of the same form) for
Fx, z;) — F(x, 2z5) <A (%) (2, — %),
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where A(x) is continuous for x € (0, x4}, we have

¢ aw

a(x)

dx <M<+ o0, (3)
M being a constant and x any number from (0, x,).
Then, Eq. (1) has a unique O-curve in the domain (2).

This lemma is an immediate generalization of Lohn's lemma ([3], p. 115) and can be proved by the
same simple method.

In order to obtain a stronger statement about the uniqueness of the O-curve, Andreev makes, nat-
urally, additional assumptions relative to the structure of the right-hand side of (1) (for example, its
representability in the form F(x, z) = ®&(x, z) + n(x, z) and the Lipschitz condition with respect to z). His
uniqueness theorem establishes a relation between the Lipschitz coefficient, depending on x, the compari-
son introduced by him, which characterizes the smallness of the perturbation n(x, z), and the function o (x).

If we seek the conditions for the uniqueness of the O-curve for (1) in the case when F(x, z) is from
the Osgood class, which will be defined below in a precise manner, then, apparently, the following theorem
which generalizes Lohn's lemma will be useful.

THEOREM 1. Assume that for Eq. (1):
1) the Hartman-—Wintner conditions hold;
2) in the domain (2) (or any subdomain of the same form) for z; > z, we have
Fx, 2} —F(x, 2) < Mx) 0,4z, — 2,),
where

A (x)
@ (x)

dy <« M <<+ <,

ELIS

wy(7) is & continuous function, w3(0) =0, wy(r) > 0 for 7 > 0,

v
0
Then Eq. (1) has in the domain (2) a unique O~-curve.
Hartman and Wintner apply their theorem to the generalized Briot—Bouquet equation
w2 = —pz + [ (%, 2), 4
where q = 1; £(x, z) is a real single-valued function, continuous in the rectangle
0 <CxC Xy —2<2K2,
finally, p is an arbitrary positive number.
They have obtained the following corollary.
COROLLARY. If
f(0, 2y=0() for z—0

(in fact it is sufficient if {£(0, z)| = p|z| for small |z, 0 < |z| =< zy), then Eq. (4) has at least one solution
z = z(x), which exists for all small x > 0, and all these solutions are O-curves.

Then, the authors of [1] make the following remark: if the conditions of the corollary hold, then in
order to guarantee the uniqueness of the O-curve it is sufficient to require the growth of f(x, z) with z.

For our part we obtain the following corollary.
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COROLLARY. For the uniqueness of the O-curve it is sufficient to require that
Fx, ) —Flx ) <A o3(2, —2)  (2,>2,),
where A(X) and ws(x) are defined as in Theorem 1.

2°. We consider the "algebroid" differential equation

g Pn(x7 y)+fn(xv y_)__*
Qu(x, Y)+ gulx, v)

where Pp, Qp are homogeneous polynomials of integer exponent n > 1:

n
Pn = an—lyxn_l + Z an—kykxn‘k’ (6)
=
n = bax™ W by )
=2

while I (%, y), gn(x, y) are continuous in the domain R, : |x| =4, |y| = b and
fns & =0(") for r=I|x{+]y|—>0. (8)
In the formulas (6), (7) in the case n =1, the empty sums are considered to be equal to zero.
We assume that
(@n_y — bp) b, <O,

Then for (5) there arises Frommer's first discernment problem (see [3], p. 108: G(0) = by, C =apn~; —bp,
i.e., CG(0) = (@pn-1 — bp)bp < 0), i.e., it is necessary to clarify whether one or several integral curves (K-
curves) tend to the point (0, 0) along simple exceptional directions which are semiaxes of the x-axis.

A survey and criticism of the papers dealing with the indicated problem is given by Andreev [4].

We give a nonuniqueness theorem and a uniqueness theorem for the perturbations fy, g from the Os-
good and Tamarkine classes which are defined below. We note that, as a rule, the authors usually assume
that f,, and gy are from the Lipschitz class.

For our purposes it is sufficient to consider the domain
R:OLx<a |yl<b (9)
and, without loss of generality, to assume
n<<b,=1, ptra,,

Definition 1. We consider the family {f(x, y)} of functions, Lebesgue measurable with respect to x
for each fixed y and continuous with respect to y for each fixed x from the domain R. This family will be
called a Tamarkine class if there exist measurable nonnegative functions s(x) and w(t), s(x) > 0 for x > 0,
w(t) > 0fort> 0,

t
S dy <o (t>0),
o (y)

such that in R we have
[F@x, ) —T{x y())|>s@o(jy—y&)])*

where y = y(x) is some continuous curve from the domain R.

The family {f(x, y)} will be called an Osgood class if there exist measurable nonnegative functions
8¢ (x) and wy(t)

* For some subclass of such functions £ € C, J. Tamarkine [5] has proved a nonuniqueness theorem for
the solution of the Cauchy problem of y' = £(x, y).
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L = (>0, (10
¢ y (f)

such that in R we have
i yy) —Fx, ) <5 () oy (| 4y — 8-

Definition 2. A continuous curve y = y(x) from the domain R will be called a K-curve if y(x}/x — 0
for x — 0, and will be called a K~solution if it also satisfies (5).

Two K-solutions y =y, (x) and y = y,(x) are said to be essentially distinet, if Ix, ( (0, a'] such that
¥V x€ (0, Xg) y1{x) # y9(x).

The K-solutions y = Y, (x) and y = Y,(x) will be called respectively the upper and the lower K-solu-

tions of (5), if for every K-solution y = y(x) of (5) we have: Y,(x) = y(x) = Y,(x). It is easy to prove the
existence and the uniqueness of such solutions.

We consider the class of pairs of functions f,, g,, formed by functions f,, from the Tamarkine class
and by functions gy from the Osgood class, such that the following conditions hold in R. For fy:

Fn e 9) —Tn (% 0(0)| = s(x) 2" (ly—8x)), (11)

where y = 9(x) is some fixed K-solution of (5); s(x) and w(t) are measurable and nonnegative; s(x) > 0 for
x>0, wt) > 0fort>0,

Cdr
12
j <> >0 (12)

and for g, at least one of the following two inequalities holds
Lgn (X, 91)— &n (%, 92l L& gy — 13, (L >0), (13)

(g, (% 4) — &, (%, Y| <)o (Jy, — 42 1). 1 (14)

We denote

hn = “Fn (X, !/) - fn {;x’ 8 (x))
It follows from (11) that we can have only the following possibilities for the sign of hy in R\ {x, 6(x)} for
0<x=a:

a) hp preserves the sign; b) hy > 0 for y > 9(x) and hy; < 0 for y < 6(x); ¢) hy < 0 for y > ¢(x) and
b, > 0 for y < 6(x).

For the pair of functions mentioned we have the following theorem.

THEOREM 2. Equation (5) for 0 < y < 1 has at least two essentially distinct K-solutions (hence,
infinitely many) in the cases a) and b). In the case c), v = 6(x) is the unique K-solution. In the case a) for
h>0(h< 0)Y,x = 6(x)(Y;(x) = 6(x)), and in the case b) Yy(x) < 6(x) < Y;(x) for x > 0.

Now we give a uniqueness theorem for the K-solutions.
THEOREM 3. Assume that for Eq. (5) we have the domain R
[Tty ) —Fo (2 ) | <H @) 20 (g —y5])
where H(x) is continuous for x > 0 and

v
_de< 0, (15)
X

e

* Naturally, condition (10) is assumed only in the case when the function w;(t) is not equivalent to zero.
tIn the inequality (14) the functions s(x) and w (x) are the same as in (11).



w(t) is continuous for t = 0, w(0) =0, w(t) > 0 for £ > 0 and

and for g, at least one of the following two conditions holds: 1) (13) is satisfied; 2) gp is from the same class
as f,. Then (5) has a unique K-solution.

We note that one cannot replace condition (15) by one of the two conditions

H(x)——dx =c (v>0)

)

X

°L1-—D<

=

v
2) j xx(js) dx<< oo  (§>0 is arbitrary),
0

since a bundle of distinct K-solutions can appear.
Theorems 2 and 3 for Osgood and Tamarkine classes form a result close to the criterion.

An important fact recently established experimentally is the discontinuance of the diffusion
in the critical domain of stratification [6]. By this, the nonlinear character of the diffusion equation
is established. In the determination of the self-similar solutions of the nonlinear parabolic equation of the
isothermal diffusion, there arises the problem of distinguishing the O-curves.
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